Sains Malaysiana 54(10)(2025):
2525-2537
http://doi.org/10.17576/jsm-2025-5410-15
Geochemical
and Mineralogical Characterization of Sangiran Mud Vulcano: Insights into Rare Earth Element (REE) Enrichment
(Pencirian Geokimia dan Mineralogi Gunung Berapi Lumpur Sangiran: Pandangan terhadap Pengayaan Unsur Nadir Bumi (REE))
CAHYO AJI HAPSORO1,*, KHARISMA ASMARANI BUDIONO1, MOCHAMAD KHOIRUL RIFAI1, ALPAN IBRAHIM1, MARIYANTO MARIYANTO2,6, ELEONORA AGUSTINE3, RINA DWI INDRIANA4 & MIMIN IRYANTI5
1Department
of Physics, Faculty of Mathematics and Natural Sciences, State University of
Malang, Jl. Semarang 5, Malang, 65145, Indonesia
2Department
of Geophysical Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya,
60111, Indonesia
3Department
of Geophysics, Faculty of Mathematics and Natural Science, Padjajaran University, Jl. Ir. Soekarno KM 21, Sumedang, 45363,
Indonesia
4Department
of Physics, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH, Semarang, 1269,
Indonesia
5Department
of Educational Physics, Faculty of Education of Mathematics and Natural
Science, Indonesia University of Education, Jl. Dr. Setiabudhi 229, Bandung, 40154, Indonesia
6Faculty
of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung,
40132, Indonesia
Received:
20 January 2025/Accepted: 11 August 2025
Abstract
The Sangiran Mud Volcano (SMV),
an inactive mud volcano located in Central Java, Indonesia, exhibits a unique
geological framework with promising potential for Rare-Earth Element (REE)
mineralization. This study explores the geochemical properties and REE mineral
content of SMV through comprehensive analytical methods, including magnetic
susceptibility measurements for magnetic property analysis, X-Ray Fluorescence
(XRF) for quantitative elemental analysis, X-Ray Diffraction (XRD) X’Pert PRO PANalytical plays a
role in identifying the crystalline phases of REE-related minerals, Scanning
Electron Microscopy-Energy Dispersive X-Ray Energy Dispersive Spectroscopy
(SEM-EDS) Hitachi Flexsem 1000 provides microscopic
characterization of morphology and elemental composition, and Inductively
Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) is used to determine REE
concentrations with high precision. The findings showed that SMV samples mostly
consist of hematite and cerium, with average concentrations of 83.16% and
16.83%, respectively. Further geochemical analysis identified significant
concentrations of REEs, particularly lanthanum (La) and cerium (Ce), with La
showing the highest average concentration at 44.39 ppm, followed by Ce at 37.96
ppm. Additionally, XRF analysis showed that the oxide composition in the
samples was dominated by SiO2 (55.36%), followed by Fe2O3 (17.18%), Al2O3 (11.11%), CaO (15.73%), TiO2 (1.02%), K2O (0.8%), and ZrO2 (0.048%). XRD analysis
showed the highest potential REE content in samples T1 and T7, with silicon
iron cerium deuteride concentrations of 19.8% and 19.4%, respectively. SEM-EDS
spectra showed that carbon (C) and oxygen (O) are the main elements, while lower
concentrations of Al, Si, Fe, K, and Ca were observed, and trace elements,
including Mg and Na, were also detected in small amounts, and ICP-OES analysis
detected other REEs, including dysprosium (Dy), europium (Eu), gadolinium (Gd), holmium (Ho), neodymium (Nd), praseodymium (Pr), samarium (Sm), terbium (Tb),
yttrium (Y), and scandium (Sc). This decision highlights the potential for REE
mineralization in the SMV. Further exploration and characterization of this
region could enhance understanding of REE enrichment processes in mud volcano
systems and have significant implications for future resource development.
Keywords: Geochemical analysis; hematite and cerium; mineralization potential; Rare
Earth Elements (REE); Sangiran Mud Volcano (SMV)
Abstrak
Gunung Berapi Lumpur Sangiran (SMV), gunung berapi lumpur tidak aktif yang terletak di Jawa Tengah, Indonesia, mempamerkan rangka kerja geologi yang tersendiri dengan potensi untuk mineralisasi Unsur Nadir Bumi (REE). Penyelidikan ini meneroka sifat geokimia dan kandungan mineral
REE SMV melalui kaedah analisis yang komprehensif, termasuk pengukuran kerentanan magnet digunakan untuk analisis sifat magnetik material, Pendaflour Sinar-X (XRF) digunakan untuk analisis unsur kuantitatif, Belauan Sinar-X (XRD) X’Pert PRO PANalytical memainkan peranan dalam mengenal pasti fasa kristal mineral berkaitan REE, Mikroskopi Elektron Imbasan-Serakan Tenaga Sinar-x Spektroskopi Serakan Tenaga (SEM-EDS)
Hitachi Flexsem 1000 menyediakan pencirian mikroskopik morfologi dan komposisi unsur dan Spektrometri Pemancaran Plasma-Optik Berganding Secara Induktif digunakan untuk menentukan kepekatan REE dengan ketepatan tinggi. Penemuan menunjukkan bahawa sampel SMV kebanyakannya terdiri daripada hematit dan serium dengan kepekatan purata masing-masing 83.16%
dan 16.83%. Analisis geokimia selanjutnya mengenal pasti kepekatan ketara REE, khususnya lanthanum
(La) dan serium (Ce) dengan La menunjukkan kepekatan purata tertinggi pada 44.39 ppm diikuti oleh Ce pada 37.96 ppm. Selain itu, analisis XRF menunjukkan sebatian oksida dalam sampel didominasi oleh SiO2 (55.36%), diikuti oleh Fe2O3 (17.18%), Al2O3 (11.11%), CaO (15.73%), TiO2 (1.02%), K2O (0.8%) dan ZrO2 (0.048%), analisis XRD menunjukkan kandungan REE berpotensi tertinggi dalam sampel T1 dan T7 dengan kepekatan deuteride silikon besi serium masing-masing sebanyak 19.8% dan 19.4%, spektrum SEM-EDS mendedahkan bahawa karbon (C) dan oksigen (O) adalah unsur utama, manakala kepekatan Al, Si,
Fe, K dan Ca yang lebih rendah diperhatikan sedangkan unsur kecil, termasuk Mg dan Na juga dikesan dalam jumlah surih dan analisis ICP-OES mengesan REE lain, termasuk dysprosium (Dy),
europium (Eu), gadolinium (Gd), holmium (Ho),
neodymium (Nd), praseodymium (Pr), samarium (Sm), terbium (Tb), yttrium (Y) dan skandium (Sc). Keputusan ini menggariskan potensi untuk mineralisasi REE dalam SMV. Penerokaan dan pencirian yang lebih terperinci bagi rantau ini boleh meningkatkan pemahaman proses pengayaan REE dalam sistem gunung berapi lumpur dan mempunyai implikasi yang ketara untuk pembangunan sumber masa hadapan.
Kata kunci: Analisis geokimia; Gunung Berapi Lumpur Sangiran (SMV); hematit dan serium; potensi mineralisasi; Unsur Nadi Bumi (REE)
References
Alibert, C.
2016. Rare earth elements in Hamersley BIF minerals. Geochimica et Cosmochimica Acta 184: 311-328.
https://doi.org/10.1016/j.gca.2016.03.026
Blengini, G.A., Nuss, P., Dewulf, J., Nita, V., Peirò, L.T., Vidal-Legaz, B., Latunussa, C., Mancini, L., Blagoeva,
D., Pennington, D., Pellegrini, M., Van Maercke, A.,
Solar, S., Grohol, M. & Ciupagea, C. 2017. EU
methodology for critical raw materials assessment: Policy needs and proposed
solutions for incremental improvements. Resources Policy 53: 12-19.
https://doi.org/10.1016/j.resourpol.2017.05.008
Bronto, S., Asmoro, P. & Efendi, M. 2017. Gunung api lumpur di daerah Cengklik dan sekitarnya, Kabupaten Boyolali Provinsi Jawa Tengah. Jurnal Geologi dan Sumberdaya Mineral 18(3): 147-159. https://doi.org/10.33332/jgsm.geologi.v18i3.269
Casadei, M.,
Ren, X., Rinke, P., Rubio, A. & Scheffler, M. 2012. Density-functional
theory for 𝑓-electron systems: The 𝛼−𝛾 phase
transition in cerium. Physical Review Letters 109(14): 146402.
https://doi.org/10.1103/PhysRevLett.109.146402
Courtney-Davies,
L., Ciobanu, C.L., Verdugo-Ihl,
M.R., Dmitrijeva, M., Cook, N.J., Ehrig,
K. & Wade, B.P. 2019. Hematite geochemistry and geochronology resolve
genetic and temporal links among iron-oxide copper gold systems, Olympic Dam
district, South Australia. Precambrian Research 335: 105480.
https://doi.org/10.1016/j.precamres.2019.105480
Dahle, J.
& Arai, Y. 2015. Environmental geochemistry of cerium: Applications and
toxicology of cerium oxide nanoparticles. International Journal of Environmental
Research and Public Health 12(2): 1253-1278.
https://doi.org/10.3390/ijerph120201253
Dearing,
J.A., Dann, R.J.L., Hay, K., Lees, J.A., Loveland, P.J., Maher, B.A. &
O’Grady, K. 1996. Frequency-dependent susceptibility measurements of
environmental materials. Geophysical Journal International 124(1):
228-240. https://doi.org/10.1111/j.1365-246X.1996.tb06366.x
Dushyantha, N., Batapola, N., Ilankoon, I.M.S.K.,
Rohitha, S., Premasiri, R., Abeysinghe, B.,
Ratnayake, N. & Dissanayake, K. 2020. The story of rare earth elements
(REEs): Occurrences, global distribution, genesis, geology, mineralogy and
global production. Ore Geology Reviews 122: 103521.
https://doi.org/10.1016/j.oregeorev.2020.103521
El-Taher,
A., Badawy, W.M., Khater,
A.E.M. & Madkour, H.A. 2019. Distribution
patterns of natural radionuclides and rare earth elements in marine sediments
from the Red Sea, Egypt. Applied Radiation and Isotopes 151: 171-181.
https://doi.org/10.1016/j.apradiso.2019.06.001
Galos, K., Lewicka, E., Burkowicz, A., Guzik, K., Kot-Niewiadomska, A., Kamyk, J. & Szlugaj, J. 2021.
Approach to identification and classification of the key, strategic and
critical minerals important for the mineral security of Poland. Resources
Policy 70: 101900. https://doi.org/10.1016/j.resourpol.2020.101900.
Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N. & Sanganyado, E. 2018. Sources, behaviour, and environmental
and human health risks of high-technology rare earth elements as emerging
contaminants. Science of The Total Environment 636: 299-313.
https://doi.org/10.1016/j.scitotenv.2018.04.235
Hapsoro, C.A., Mariyanto, M., Agustine, E., Iryanti, M., Indriana, R.D.,
Rifai, M.K., Ibrahim, A. & Budiono, K.A. 2023.
Identification of sediment formation based on magnetic content and element
composition of mud volcano in Sangiran sediment using
VSM and X-ray fluorescence. JPSE (Journal of Physical Science and
Engineering) 8(1): 9. https://doi.org/10.17977/um024v8il2023p009
Hidayat, W.
& Novianto, A. 2020. Potential analysis of
geological disasters ‘mud volcano’ at Boyolali and
its surrounding areas based on geomagnetic methods. AIP Conference
Proceedings 2251: 040006.
https://doi.org/10.1063/5.0016349
Indriana, R.D., Mariyanto, M., Agustin, E., Iryanti,
M., Hapsoro, C.A., Koesuma,
S. & Ashadi, A.L. 2024. Gravity interpretation of
mud volcano based on satellite data (study case Kuwu and Cangkring Mud Volcano). Indonesian Journal of
Applied Physics 14(1): 165. https://doi.org/10.13057/ijap.v14i1.84933
Indriana, R.D., Saputra, H., Mariyanto, M.,
Agustin, E., Iryanti, M. & Hapsoro,
C.A. 2023. Rare earth element characterization of Bledug Kuwu Mud Volcano, Central Java, Indonesia, based on
geochemical analyzes (susceptibility, XRF, XRD,
SEM-EDS and ICP-EOS). Sains Malaysiana 52(9): 2529-2543.
https://doi.org/10.17576/jsm-2023-5209-05
Isnaniawardhani, V., Muhamadsyah, F. & Sudrajat,
A. 2018. Foraminifera assemblages as a marker of mud eruption source in Ciuyah, Ciniru - Kuningan, West Java. RISET Geologi dan Pertambangan 28(2): 239.
https://doi.org/10.14203/risetgeotam2018.v28.509
Iwamori, H.,
Nakamura, H., Chang, Q., Morikawa, N. & Haraguchi,
S. 2020. Multivariate statistical analyses of rare earth element compositions
of spring waters from the Arima and Kii areas,
Southwest Japan. Geochemical Journal 54(4): 165-182.
https://doi.org/10.2343/geochemj.2.0583
Kumar,
V., Sharma, A., Kumar, R., Bhardwaj, R., Thukral,
A.K. & Rodrigo-Comino, J. 2020. Assessment of heavy-metal pollution in
three different Indian water bodies by combination of multivariate analysis and
water pollution indices. Human and Ecological Risk Assessment: An
International Journal 26(1): 1-16.
https://doi.org/10.1080/10807039.2018.1497946
Leventeli, Y.
& Yalcin, F. 2021. Data analysis of heavy metal
content in riverwater: Multivariate statistical
analysis and inequality expressions. Journal of Inequalities and
Applications 2021(1): 14. https://doi.org/10.1186/s13660-021-02549-3
Maestrelli, D., Bonini, M. & Sani, F. 2019. Linking structures with the
genesis and activity of mud volcanoes: Examples from Emilia and Marche
(Northern Apennines, Italy). International Journal of Earth Sciences 108(5): 1683-1703. https://doi.org/10.1007/s00531-019-01730-w
Mauri,
G., Husein, A., Mazzini, A., Irawan,
D., Sohrabi, R., Hadi, S., Prasetyo, H. & Miller, S.A. 2018a. Insights on the
structure of Lusi mud edifice from land gravity data. Marine and Petroleum Geology 90: 104-115.
https://doi.org/10.1016/j.marpetgeo.2017.05.041
Mauri,
G., Husein, A., Mazzini, A., Karyono,
K., Obermann, A., Bertrand, G., Lupi,
M., Prasetyo, H., Hadi, S.
& Miller, S.A. 2018b. Constraints on density changes in the funnel-shaped
caldera inferred from gravity monitoring of the Lusi mud eruption. Marine and Petroleum Geology 90: 91-103. https://doi.org/10.1016/j.marpetgeo.2017.06.030
Mazzini,
A. & Etiope, G. 2017. Mud volcanism: An updated
review. Earth-Science Reviews 168: 81-112.
https://doi.org/10.1016/j.earscirev.2017.03.001
Mazzini,
A., Sciarra, A., Lupi, M., Ascough, P., Akhmanov, G., Karyono, K. & Husein, A.
2023. Deep fluids migration and submarine emersion of the Kalang Anyar Mud Volcano (Java, Indonesia): A
multidisciplinary study. Marine and Petroleum Geology 148: 105970.
https://doi.org/10.1016/j.marpetgeo.2022.105970
Novianto, Ardian, Sutanto, Suharsono, Prasetyadi, C. &
W. Hidayat. 2022. Mud volcano: Revealing the
stratigraphy of Kendeng Basin, Indonesia. Open
Journal of Yangtze Oil and Gas 7(1): 48-64.
https://doi.org/10.4236/ojogas.2022.71004
Samankassou, Elias,
Mazzini, A., Chiaradia, M., Spezzaferri,
S., Moscariello, A. & Do Couto, D. 2018. Origin
and age of carbonate clasts from the Lusi Eruption,
Java, Indonesia. Marine and Petroleum Geology 90: 138-148. https://doi.org/10.1016/j.marpetgeo.2017.11.012
*Corresponding
author; email: cahyo.ajihapsoro.fmipa@um.ac.id